Matematika - pomoć izdvojena tema

poruka: 5.900
|
čitano: 2.430.824
|
moderatori: DrNasty, pirat, XXX-Man, vincimus
+/- sve poruke
ravni prikaz
starije poruke gore
14 godina
neaktivan
offline
Re: Matematika - pomoć
dmanz kaže...
Demzi94 kaže...

Moze  pomoc oko zadatka nezz kako da ode odredim domenu?

 

F(x)=1/tgx - 1/(x2+5)

2 uvjeta:

 

1. tg x    ->    x e R \ (pi/2 + kpi)

 

2. tg x != 0 -> x != kpi

 

 

!= znači nije jednako

 

sad to skombiniraj, nadam se da nisam fulao jer ono, slavilo se malo poslije tekme:)

 

Ma znam ja postavit uvjete sam nez kak da napisem sveukupnu domenu cijele funkcije tj presjek pojedinacnih domena , znaci ovu od tgx i ovu od nazivnika x2+5??

14 godina
neaktivan
offline
Matematika - pomoć

edit: rijesen je problem

Poruka je uređivana zadnji put sri 20.11.2013 21:15 (eagle05).
14 godina
neaktivan
offline
Matematika - pomoć

Ja bih isto trebao pomoć oko jednog zadatka, samo naputak kako ga uraditi jer nemam ideju uopće...

14 godina
neaktivan
offline
Re: Matematika - pomoć
Demzi94 kaže...
dmanz kaže...
Demzi94 kaže...

Moze  pomoc oko zadatka nezz kako da ode odredim domenu?

 

F(x)=1/tgx - 1/(x2+5)

2 uvjeta:

 

1. tg x    ->    x e R \ (pi/2 + kpi)

 

2. tg x != 0 -> x != kpi

 

 

!= znači nije jednako

 

sad to skombiniraj, nadam se da nisam fulao jer ono, slavilo se malo poslije tekme:)

 

Ma znam ja postavit uvjete sam nez kak da napisem sveukupnu domenu cijele funkcije tj presjek pojedinacnih domena , znaci ovu od tgx i ovu od nazivnika x2+5??

JEl moze neko rjesit stvarno je hitno!!!

12 godina
neaktivan
offline
Re: Matematika - pomoć
Demzi94 kaže...
Ma znam ja postavit uvjete sam nez kak da napisem sveukupnu domenu cijele funkcije tj presjek pojedinacnih domena , znaci ovu od tgx i ovu od nazivnika x2+5??

Nacrtaj trigonometrijsku kružnicu i na nju ucrtaj sve vrednosti koje ne pripadaju domeni. Znači, prvo ucrtaj vrednosti π/2+kπ, a zatim vrednosti kπ. Nakon toga ćeš lako uočiti kako da napišeš izraz za sveukupnu domenu. :)

 

Što se tiče x2+5, taj izraz nikad nije jednak nuli, tako da njega i ne razmatraš. A nije jednak nuli jer je x2 uvek veće ili jednako nuli, pa kad se na to doda 5, dobiješ izraz koji je uvek veći ili jednak 5, tj. ne može biti 0.

Poruka je uređivana zadnji put sri 20.11.2013 23:30 (imho).
14 godina
neaktivan
offline
Re: Matematika - pomoć
imho kaže...
Demzi94 kaže...
Ma znam ja postavit uvjete sam nez kak da napisem sveukupnu domenu cijele funkcije tj presjek pojedinacnih domena , znaci ovu od tgx i ovu od nazivnika x2+5??

Nacrtaj trigonometrijsku kružnicu i na nju ucrtaj sve vrednosti koje ne pripadaju domeni. Znači, prvo ucrtaj vrednosti π/2+kπ, a zatim vrednosti kπ. Nakon toga ćeš lako uočiti kako da napišeš izraz za sveukupnu domenu. :)

 

Što se tiče x2+5, taj izraz nikad nije jednak nuli, tako da njega i ne razmatraš. A nije jednak nuli jer je x2 uvek veće ili jednako nuli, pa kad se na to doda 5, dobiješ izraz koji je uvek veći ili jednak 5, tj. ne može biti 0.

Puno hvala!!

 

Možes mi samo jos objasnit da je npr ovde dole bilo x-5 u nazivniku znaci uvjet ,uz onaj tg ,bi jos bio i da je x razlicit od 5

Kako bi onda naso domenu tih funkcija kad tj kako bi to sve nacrto kad imas u jednom uvjetu kut u radijanima a u drugom broj 5??

14 godina
neaktivan
offline
Matematika - pomoć

Moze li mi neko uraditi ovaj zadatak: Rijesiti sistem jednacina Gaus-Jordanovom metodom pomocu prosirene matrice

 

-2x+6y-4z=10

3x-4y+5z=3

5x-y+2z=15

11 godina
neaktivan
offline
Re: Matematika - pomoć
eagle05 kaže...

Moze li mi neko uraditi ovaj zadatak: Rijesiti sistem jednacina Gaus-Jordanovom metodom pomocu prosirene matrice

 

-2x+6y-4z=10

3x-4y+5z=3

5x-y+2z=15

Evo pogledaj ovo i bit ce ti jasno

14 godina
neaktivan
offline
Matematika - pomoć

Shvatio sam ja kako se to radi, ali ja nikako da pronadjem prave kombinacije za oduzimanje/dodavanje/mnozenje,.. pokusavam 3 sata i nista.

Trebam dobiti jedinicnu matricu, ali kao sto sam vec rekao nikako da nadjme pravu kombinaciju

100

010

001

17 godina
neaktivan
offline
Re: Matematika - pomoć
eagle05 kaže...

Shvatio sam ja kako se to radi, ali ja nikako da pronadjem prave kombinacije za oduzimanje/dodavanje/mnozenje,.. pokusavam 3 sata i nista.

Trebam dobiti jedinicnu matricu, ali kao sto sam vec rekao nikako da nadjme pravu kombinaciju

100

010

001

Ono što smiješ raditi pri rješavanju takvog sustava preko matrica je:

  1. Množiti red s konstantom
  2. Zbrojiti jedan red s drugim redom
  3. Zbrojiti jedan red pomnožen s konstantom s drugim redom
  4. Zamijeniti redove

 

Algoritam kako sam ja rješavao:

  1. Koristiš gornje postupke da u 1. redu dobiješ da ti je član a11=1
  2. Množiš 1. red onom konstantom da kad 1. red zbrojiš s 2. redom, da je član a21=0
  3. Množiš 1. red onom konstantom da kad 1. red zbrojiš s 3. redom, da je član a31=0
  4. ...
  5. Množiš 1. red onom konstantom da kad 1. red zbrojiš s n-tim redom, da je član an1=0
  6. Sad imaš matricu u kojoj ti je 1. član u 1. redu = 1, a svi ostali članovi u 1. stupcu su 0

 

  1. Koristiš gornje postupke da u 2. redu dobiješ da ti je član a22=1
  2. Množiš 2. red onom konstantom da kad 2. red zbrojiš s 1. redom, da je član a12=0
  3. Množiš 2. red onom konstantom da kad 2. red zbrojiš s 3. redom, da je član a32=0
  4. ...
  5. Množiš 2. red onom konstantom da kad 2. red zbrojiš s n-tim redom, da je član an2=0
  6. Sad imaš matricu u kojoj ti je u 2. član u 2. redu = 1, a svi ostali članovi u 2. stupcu su 0

 

itd.

 

Taj algoritam koristiš sve dok ne svedeš matricu na jediničnu. Naravno, kako sređuješ matricu, iste metode primjenjuješ i na desnoj strani. Tako da ako množiš red s 2, onda trebaš i desnu stranu tog reda pomnožiti s 2.

 

P.S. - super kalkulator za provjeru rješenja: http://www.bluebit.gr/matrix-calculator/linear_equations.aspx

12 godina
neaktivan
offline
Re: Matematika - pomoć
Demzi94 kaže...

Možes mi samo jos objasnit da je npr ovde dole bilo x-5 u nazivniku znaci uvjet ,uz onaj tg ,bi jos bio i da je x razlicit od 5

Kako bi onda naso domenu tih funkcija kad tj kako bi to sve nacrto kad imas u jednom uvjetu kut u radijanima a u drugom broj 5??

Kad si, uz pomoć trigonometrijske kružnice, odredio koje vrednosti ne pripadaju domeni, a to su vrednosti kπ/2, sada tim vrednostima dodaš još vrednost x=5 i to je onda ukupan skup vrednosti koje ne pripadaju domeni. Domena će biti razlika skupa realnih brojeva i tog skupa vrednosti koje ne pripadaju domeni:

Df=ℝ\({kπ/2, k∈ℤ}∪{5})

13 godina
neaktivan
offline
Matematika - pomoć

Moze mi netko objasniti kako se rjesava ovaj tip zadatka.Naziv cjeline je polinom drugog stupnja i njegov graf.Nez kako da nadem rjesenje,pomocu tablice ili?

 

x2-1 ≥ 0

x2-2x > 0

Nobody Cares!
17 godina
offline
Re: Matematika - pomoć

U prvom imaš (x-1)(x+1)≥0 dakle x-1≥0 i x+1≥0 što bi bilo x≥1 x<=-1.

http://www.wolframalpha.com/input/?i=x2-1+%E2%89%A5+0

 

U drugom imaš x(x-2)>0 što bi značilo da je x<0 i x>2.

http://www.wolframalpha.com/input/?i=x%5E2-2x%3E0

 

U biti možeš i tablicom...

 

Neka me netko ispravi ako sam krivo postavio, nisam se dugo igrao time. :)

Twitter: @191x7
Poruka je uređivana zadnji put sub 23.11.2013 21:41 (191x7).
13 godina
neaktivan
offline
Re: Matematika - pomoć
191x7 kaže...

U prvom imaš (x-1)(x+1)≥0 dakle x-1≥0 i x+1≥0 što bi bilo x≥1 x≥-1 iz čega bi mislim bilo x≥1.

U drugom imaš x(x-2)>0 što bi značilo da je x>0 i x>2 što bi onda bilo x>2.

 

U biti možeš i tablicom...

 

Neka me netko ispravi ako sam krivo postavio, nisam se dugo igrao time. :)

Hvala ti! :)

Nobody Cares!
Poruka je uređivana zadnji put sub 23.11.2013 21:43 (Square Enix).
17 godina
offline
Matematika - pomoć

Dopunio sam i ispravio post. Sorry, zaboravio sam bio na okretanje "manje" i "veće" kada se mijenja predznak.

Twitter: @191x7
12 godina
neaktivan
offline
Matematika - pomoć

Pomoć :D

imam zadatak (funkcije): 
2x + y = 1
y = -x2 + 2x - 2

i dakle moram nacrtat pravac i parabolu na istom grafu, meni ispada da se parabola i pravac ne diraju uopce,znaci nije ni tangenta, a ni ne sjeku se znaci nije sekanta, jel to moguce?

17 godina
offline
Re: Matematika - pomoć
isuckatthisgame kaže...

Pomoć :D

imam zadatak (funkcije): 
2x + y = 1
y = -x2 + 2x - 2

i dakle moram nacrtat pravac i parabolu na istom grafu, meni ispada da se parabola i pravac ne diraju uopce,znaci nije ni tangenta, a ni ne sjeku se znaci nije sekanta, jel to moguce?

http://www.wolframalpha.com/input/?i=2x+%2B+y+%3D+1%3B+y+%3D+-x2+%2B+2x+-+2%3B

Twitter: @191x7
12 godina
neaktivan
offline
Re: Matematika - pomoć

Da, gledao sam na wolframalpha, nije mi točna parabola, pravac je. Jel mi može netko reći kako da odredim parabolu u tom zadatku, ja stvarno više ne znam, pokušao sam riješit barem 15 zadataka i uvijek drugačiji rezultati od riješenja, a radim prema istom principu kako nam je profesorica pokazala...

17 godina
neaktivan
offline
Re: Matematika - pomoć
isuckatthisgame kaže...

Da, gledao sam na wolframalpha, nije mi točna parabola, pravac je. Jel mi može netko reći kako da odredim parabolu u tom zadatku, ja stvarno više ne znam, pokušao sam riješit barem 15 zadataka i uvijek drugačiji rezultati od riješenja, a radim prema istom principu kako nam je profesorica pokazala...

Kako tocno glasi zadatak, od rijeci do rijeci?

 

EDIT: Skuzio sam sto te muci, evo novi post.

Perhaps today IS a good day to die. PREPARE FOR RAMMING SPEED!
Poruka je uređivana zadnji put ned 24.11.2013 16:22 (1domagoj1).
12 godina
neaktivan
offline
Re: Matematika - pomoć
1domagoj1 kaže...

Kako tocno glasi zadatak, od rijeci do rijeci?

Odredi i nacrtaj sjecište/presjek parabole i pravca ako je pravac zadan jednadžbom 2x + y = 1, a parabola dana jednadžbom y = -x2 + 2x - 2

17 godina
neaktivan
offline
Re: Matematika - pomoć

Aha, nije ti jasno kako da ju nacrtas. A nema tu neke mudrosti, imas y = ax2 + bx + c, iz dane jednadzbe vidis da ti je koeficijent a negativan, tj. -1. To znaci da je parabola okrenuta prema dolje. Mozes izracunati tu kvadratnu jednadzbu, dobit ces imaginarna rjesenja, iz toga znas da parabola ne sjece x-os. Pravac napises kao y = 1 - 2x i to ubacis umjesto y u paraboli -> -x2 + 4x - 3 = 0. Izracunas tu kvadratnu jednadzbu, rjesenja su x1 = 1, x2 = 3, to znaci da se pravac i parabola sjeku u tockama cije su x-koordinate 1 i 3. Jos ti trebaju y-koordinate tih tocaka. Ubacis x1 u pravac da dobijes y1 i isto napravis za x2 da dobijes y2 i dobio si tocne koordinate tocaka T1 i T2 koje su sjeciste pravca i parabole. Izracunas y-one parabole za par nekih x-eva, npr. -1, 0, 1, 2, 3 - mozes bilo koje, ove sam ja otprilike izabrao jer se pravac i parabola sjeku u x = 1 i x = 3. Te sve tocke skiciras na grafu i pospajas.

Perhaps today IS a good day to die. PREPARE FOR RAMMING SPEED!
Poruka je uređivana zadnji put ned 24.11.2013 16:24 (1domagoj1).
17 godina
neaktivan
offline
Re: Matematika - pomoć
isuckatthisgame kaže...
1domagoj1 kaže...

Kako tocno glasi zadatak, od rijeci do rijeci?

Odredi i nacrtaj sjecište/presjek parabole i pravca ako je pravac zadan jednadžbom 2x + y = 1, a parabola dana jednadžbom y = -x2 + 2x - 2

Da bi odredio sjecište dvaju funkcija, moraš im izjednačiti jednadžbe, rješenja će ti biti koordinate dirališta:

iz 2x+y=1 imaš y=1-2x

odatle izjednacavas

 

1-2x=-x^2+2x-2

trebao bi dobiti kvadratnu

x^2-4x+3=0, čija su rješenja 1 i 3

za y koordinate uvrsti za x 1 ili 0, u bilo koju jednadzbu (pravac ili parabola, lakše ti je u pravac) i dobijes T1(3,-5), T2(1,-1)

 

Kod parabole, kad odrediš diskriminantu (D=b^2-4ac), vidiš da je ona manja od 0, a kako je i koeficijent a (ovaj uz x^2, tj. -1) u jednadžbi parabole manji od 0, to znači da nemaš realne nultočke, tako da se time ne zamaraš

 

Onda možeš odrediti x koordinatu tjemena parabole, T(x)=-b/2a, i trebaš dobiti 1; kad uvrstiš tu jedinicu u jednadžbu parabole dobiješ y koordinatu tjemena, tj. y=-1.

I onda kako imaš negativni koeficijent uz x^2 znaš da je parabola sa otvorom prema dolje i nacrtaš ju sa tjemenom u T(1,-1). Ako hoces biti precizan, uvrsti si jos par x-eva

 

e: vidim da sam preteknut {#}

Poruka je uređivana zadnji put ned 24.11.2013 18:34 (Inferno).
12 godina
neaktivan
offline
Matematika - pomoć

Uspio sam. Dakle riječ je o sekanti, a točke u kojima se sijeku su dane koordinatama T1 (1, -1) i T2 (3, -5). Pročitao sam maloprije na internetu da ako je diskriminanta D>0 onda se radi o sekanti (2 sjecišta), ako je D=0 - tangenti (1 sjecište - diralište) i D<0 pravac i parabola nemaju sjecišta.
Usporedio sam zadatak s ovim što ste mi rekli i odgovara, ty both. {#}

12 godina
neaktivan
offline
Matematika - pomoć

Imam pitanje!

Kod određivanja prirodne domene funkcije:
1. Izraz u nazivniku ne smije biti jednak nuli, dakle kažemo da je izraz različit od nule?
2. Izraz pod korijenom je veći ili jednak nuli, ovisno o tome da li se radi o nazivniku ili brojniku, nazivnik je uvijek strogo veći od nule, dok čitav skup uključujući i brojnik može biti veći ili jednak nuli, što znači da je svaka nepoznanica (x) u nazivniku različita od nule i strogo veća? Jer je dijeljenje s nulom = math error.
Jel to točno?

11 godina
neaktivan
offline
Re: Matematika - pomoć
isuckatthisgame kaže...

Imam pitanje!

Kod određivanja prirodne domene funkcije:
1. Izraz u nazivniku ne smije biti jednak nuli, dakle kažemo da je izraz različit od nule?
2. Izraz pod korijenom je veći ili jednak nuli, ovisno o tome da li se radi o nazivniku ili brojniku, nazivnik je uvijek strogo veći od nule, dok čitav skup uključujući i brojnik može biti veći ili jednak nuli, što znači da je svaka nepoznanica (x) u nazivniku različita od nule i strogo veća? Jer je dijeljenje s nulom = math error.
Jel to točno?

1.Izraz u nazivniku ti mora biti RAZLICIT od nule jer sa nulom nemozes djelit!!

2.Izraz pod PARNIM korijenom ti mora biti VECI ili JENDAK nuli ,ali ako se taj korijen nalazi u nazivniku onda on mora biti veci od nule(ako je korije neparan onda samo mora biti razlicito od nule)

17 godina
neaktivan
offline
Re: Matematika - pomoć
isuckatthisgame kaže...

Imam pitanje!

Kod određivanja prirodne domene funkcije:
1. Izraz u nazivniku ne smije biti jednak nuli, dakle kažemo da je izraz različit od nule?
2. Izraz pod korijenom je veći ili jednak nuli, ovisno o tome da li se radi o nazivniku ili brojniku, nazivnik je uvijek strogo veći od nule, dok čitav skup uključujući i brojnik može biti veći ili jednak nuli, što znači da je svaka nepoznanica (x) u nazivniku različita od nule i strogo veća? Jer je dijeljenje s nulom = math error.
Jel to točno?

nisam siguran jesam te dobro razumio, ali

 

1. nazivnik ne smije biti jednak nuli, ali cijeli izraz smije (ako je brojnik=0)

2. pod korijenom izraz mora uvijek biti veci ili jednak nuli, a sad, nazivnik moze biti i negativan, jer ako je i brojnik negativan onda je cijeli izraz pod korijenom zapravo pozitivan; znaci bolje gledaj kada ti je cijeli izraz pod korijenom pozitivan, a za nazivnik, naravno, uvijek vrijedi da ne smije biti 0

 

ne mora vrijediti da je svaka nepoznanica x u nazivniku razlicita od nule, npr ako imas neki polinom 2. stupnja, kao x²+2x+1, x ti moze biti 0 jer ti onda u nazivniku ostane samo 1, ALI x ne smije biti -1(nultocka ovog polinoma) jer je onda nazivnik=0

16 godina
neaktivan
offline
Matematika - pomoć

Je li funkcija f:Z - R, f(x)=(1-x)/(2x-5) injekcija,bijekcija,surjekcija? Koji je postupak? {#}

16 godina
offline
Re: Matematika - pomoć
nido kaže...

Je li funkcija f:Z - R, f(x)=(1-x)/(2x-5) injekcija,bijekcija,surjekcija? Koji je postupak? {#}

Surjekcija očito nije budući da joj je slika podskup skupa Q (x-evi su iz Z), a kodomena je R. Recimo, korijen(2) ne može nikako biti pogođen.

Što znači da nije ni bijekcija.

 

Za injektivnost uzmi da je f(x)=f(y). Želiš dobiti da je x=y

Laganim raspisivanjem se dobije da je x=y.

 

Dakle,

injekcija DA

surjekcija NE

bijekcija NE

http://manutd-croatia.com/forum/index.php ... forum i udruga navijača Manchester Uniteda...
11 godina
neaktivan
offline
Re: Matematika - pomoć
mirkoy kaže...

Riješi nejednadžbu 1/(X+2) > 1/(X-3) Unaprijed zahvaljujem

Prebaci ovaj 1/(x-3) na lijevu stranu i dobit ces 1/(x+2)-1/(x-3) i svedi na zajednicki nazivnik pa ces dobit:

 

(x-3)-(x+2)

-------------- > 0

(x+2)(x-3)

 

 

To kad sve središ dobiš:

 

-5/(x2-x-6)>0

 

Nađes nultočke , i napraviš tablicu gdje dobijes da je ova nejednađba na intervalu <-2,3>

14 godina
neaktivan
offline
Matematika - pomoć

1) 2cos2x+cosx-1=0

2) 2sin2x+3sinx+1=0

Da li može neko da mi uradi ove zadatke ? Hvala unaprijed :) 

Adna :)
E-mail:
Lozinka:
 
vrh stranice